Numerik 3D FVM-Modellierung

HNO-Klinik

Direktor:
Prof. Dr. med. Dr. h. c. Heinrich Iro

simVoice – Numerical computation of the human voice source

Motivation

Voice research is mostly carried out with an experimental setup (synthetic or ex-vivo/in-vivo animal and human larynges) which includes high personal, material and financial costs in combination with: (1) limited access to a few specific positions within the larynx, and (2) limitation to a few parameters. The main advantage of a numerical approach compared to the experimental investigations is the high spatial and temporal access to the flow as well as acoustic quantities and the generated acoustic source terms.

The challenge to develop a 3D aero-acoustic model for the clinical application is the need of a short simulation wall-time in combination with sufficient accuracy of the fluid dynamic characteristics within the larynx to capture all the essential acoustic sources.

Methods

The simVoice-model is a hybrid model. It consists of a fluid dynamic simulation model with an external driven vocal fold motion, based on the 3D FV method, and an aero-acoustic model, based on the 3D FE method. The commercial computational fluid dynamic (CFD) software STAR-CCM+ (Siemens) was used for the fluid dynamic calculations, and the research-driven simulation tool CFS++ for the acoustic computation.

The numerical model of simVoice considers the vocal folds, the ventricular folds and various vocal tract geometries based on a synthetic vocal fold model. The oscillation of the vocal folds, identified from in-vivo and ex-vivo high-speed imaging, is externally forced. The fluid dynamic simulation model uses the Large Eddy Simulation (LES) turbulence model to solve the incompressible fluid dynamic equations.

After that, the acoustic source terms are computed on the flow grid and a conservative interpolation to the acoustic grid, on which we solve the perturbed convective wave equation to obtain the acoustic field, is conducted. simVoice is currently optimized concerning computing time and complexity, considering the computational grid resolving all relevant turbulent scales. This optimization will achieve the prospective clinical application of the hybrid model simVoice.

Results

In the first step, the fluid dynamic and aero-acoustic models of simVoiceare validated with the experimental results to obtain physical correct acoustic source terms and results. After applying an efficient workflow between STAR-CCM+ and CFS++, reaching the postulated short wall-time for a clinical application and attaining a highly accurate overall model an extensive study on effects of various vocal fold motions, glottis geometries and vocal tracts on the acoustics will be following. As one of the last steps, simVoice< will be transferred to real phonation and verified with clinical data.

The fluid dynamic simulation part of simVoice is performed with seven nodes on the Emmy or Meggie cluster. With the mentioned use of HPC resources, the wall time of the LES simulations for the necessary ten vocal fold oscillations range up to 330 hours.

The innovative scientific aspects of simVoice are: (1) Analysis of the magnitude of dissolving the time-dependent turbulent fluid flows to obtain physical correct acoustic source terms; (2) To gain insight in the cause and effect of the vocal folds motion, fluid flow and acoustics; (3) An extensive study of the impact of various glottis geometries, vocal fold motions and vocal tracts on the acoustic signal.

 

Two-dimensional cut of the human larynx from a coronal view. The airflow from the lungs is passing the glottal region that contains the Vocal folds (VF) and the Ventricular folds (VeF).
Experimental setup of the glottal region with a following simplified vocal tract and the four microphones placed in the far field to measure the acoustics.
Numerical 3D-FVM model which represents the experimental setup.
Amplitude Spectral Density of the microphone measurement points in the far field of the experiments (red) and the acoustic computations (blue). The fundamental frequency of 148 Hz can be identified, and all following spectral amplitudes show good agreements.

Funding and project period

DFG
since 10/2015

DO1247/10-1
02/2018-01/2021

Project staff

Sebastian Falk M. Sc.
Telefon: 09131 85-32607
Fax: 09131 85-32687
E-Mail: sebastian.falk@uk-erlangen.de
Visitenkarte

Cooperation

Prof. Dr. techn. Dr.-Ing. habil. Manfred Kaltenbacher – Institute of Mechanics and Mechatronics at the Vienna University of Technology: Responsible for the interpolation of the fluid dynamic results to the acoustic grid, and the solving of the perturbed convective wave equation to obtain the acoustic field. This part of the project is funded by Der Wissenschaftsfonds (FWF) of Austria under the project no. I 3702.

Publications

H. Sadeghi, S. Kniesburges, M. Kaltenbacher, A. Schützenberger, and M. Döllinger: Computational models of laryngeal aerodynamics: Potentials and numerical costs, Journal of Voice, 2018.

H. Sadeghi, M. Döllinger, M. Kaltenbacher, and S. Kniesburges: Aerodynamic impact of the ventricular folds in computational larynx models. Journal of Acoustical Society of America, 2019.

H. Sadeghi, S. Kniesburges, S. Falk, M. Kaltenbacher, A. Schützenberger, and M. Döllinger: Toward a Clinical Applicable Computational Larynx Model. Appl. Sci., 2019.

 
Kontakt

Phoniatrie und Pädaudiologie
Hals-Nasen-Ohren-Klinik
Leitung:
Dr. med. Anne Schützenberger
Waldstr. 1
91054 Erlangen

Telefon: 09131 85-32782
Telefax: 09131 85-32687
E-Mail: phoni-Sekretariatatuk-erlangen.de

So finden sie uns

Die Abteilung Phoniatrie und Pädaudiologie finden Sie in Räumlichkeiten im 3. und 4. OG des Cicero-Gebäudes. Zur Orientierung melden Sie sich bitte an der Pforte der HNO-Klinik in der Waldstraße 1.

Anreise und Lageplan:

Orientierungshilfe :

 

 

 

Aktuelles

Frau Dr. rer. medic. Dipl. Log. Anke Ziethe habilitierte sich am 21.06.19. Wir gratulieren!

Frau Dr. Anke Ziethe erhielt im Mai 2019 auf dem Annual Symposium (Care of the Professional Voice) der The Voice Foundation in Philadelphia (USA) den Preis "Spasmodic Dysphonia Research Award" für das Forschungsvorhaben "Analysis and Training of Feedback Mechanisms for Phonation and Speech of Patients with Muscle Tension Dysphonia (MTD)".

Im Mai 2019 besucht Frau Professor Rita Patel die Abteilung zu einem Forschungsaufenthalt. Sie ist eine international anerkannte Kollegin und lehrt und forscht an der Indiana University Bloomington in den USA.

Die DFG hat im Januar 2019 für drei Jahre das Forschungsprojekt „Induzierte Asymmetrien im exzidierten Kehlkopfmodell: Einfluss von Mukuseigenschaften auf Bewegung und Akustik“  bewilligt.

Die DFG hat im Dezember 2018 für drei Jahre das Forschungsprojekt „Chronical electrical stimulation for treatment of presbyphonia“ bewilligt. Das Projekt wird in Kooperation mit Prof. Gugatschka (Graz) durchgeführt, der durch den FWF gefördert wird.

Frau Dr. med. Anne Schützenberger hat die erforderlichen Voraussetzungen des FEES Curriculums für neurogene Dysphagien erfüllt und am 13.11.18 das FEES-Ausbilder-Zertifikat der DGN, DSG und DGG erhalten.

 

Zertifizierungen
Text TÜV Süd auf weißem Grund umgeben von achteckigen blauen Ring in dem in weißer Schrift ISO 9001 steht